Thursday, September 3, 2015

Applications Of The High Pressure Positive Displacement Pump

By Daphne Bowen


The industrial applications of pumps have greatly changed the way machines work. At the helm of this transformation is the high pressure positive displacement pump (abbreviated as the PD pumps). Ever since their discovery, they have constantly been applied in machinery both in the traditional and modern setting.

The rotary and reciprocating pumps constitute the two main classes of pumps. They are similar in that they both allow a constant rate of flow but different in a functional point of view. Rotary pumps require constant lubrication through the pumping process. Their suitability with highly viscous fluids is the corner stone of their operation. They however cannot transmit abrasive fluids like water and gas efficiently. Vaporized fluids can be pumped but for only limited periods of time. Reciprocating pumps on the other hand are more all rounded because they are better suited for both viscous and abrasive liquids.

Their ability to operate efficiently depends widely on viscosity and pressure, as seen above. These two properties usually affect rate of flow. This is actually the main reason why they are preferred to their centrifugal counterparts. The ability to maintain a constant rate of flow even with significant variations in viscosity and discharge pressure makes them more versatile.

The most monumental applications of PD pumps is in the oil industry. Here they mainly serve to pump the crude oil from the extraction site to the processing site. It was initially expensive to separately pump the constituents of the extracted matter which included the oil, gas, water and sand. This was largely due to the fact that it contained significantly large amounts of gas. However the ability of reciprocating pumps to transmit gases came in handy. The mixture was now being transmitted as it was without the need of building separate pumping stations for each element.

The properties above helped curb the cost of transmitting oil from offshore countries since oil and gas mixture could be pumped through one mechanism only.

Its applications can also be extended to the chemical process industry. These include the pharmaceuticals, food and beverage production and biotechnology. A typical chemical process is usually accompanied by major fluctuations in the physical properties of the initial mixture such as viscosity. Since PD pumps maintain a constant flow rate despite these unpredictable changes, it is the most suitable for transmitting the fluid through the reaction chambers.

Paper mills usually dissolve the wood fibers and the resulting solution is used as a fuel for the boilers. This fuel needs to be pumped at a consistent rate. Viscosity of this solution keeps changing as it is burned while pressure also fluctuates wildly due to clogging in some passageways and erosion. A PD drive is therefore vital in ensuring that a constant rate of flow is maintained since irregular amounts of heat can distort the final quality of paper.

As a parting shot, each and every aspect of the transmitted fluid should be analyzed before choosing which pumps to use, however the PD pumps have been seen to be efficient at maintaining the rate of flow.




About the Author:



No comments:

Post a Comment